MySQL 开发实践

1.MySQL读写性能是多少,有哪些性能相关的重要参数?

几个重要的配置参数,可根据实际的机器和业务特点调整

max_connecttions:最大连接数

table_cache:缓存打开表的数量

key_buffer_size:索引缓存大小

query_cache_size:查询缓存大小

sort_buffer_size:排序缓存大小(会将排序完的数据缓存起来)

read_buffer_size:顺序读缓存大小

read_rnd_buffer_size:某种特定顺序读缓存大小(如order by子句的查询)

查看配置方法:show variables like '%max_connecttions%';

2.MySQL负载高时,如何找到是由哪些SQL引起的?

方法:慢查询日志分析(MySQLdumpslow)

慢查询日志例子,可看到每个慢查询SQL的耗时:

# User@Host: edu_online[edu_online] @  [10.139.10.167]

# Query_time: 1.958000  Lock_time: 0.000021 Rows_sent: 254786  Rows_examined: 254786

SET timestamp=1410883292;

select * from t_online_group_records;

日志显示该查询用了1.958秒,返回254786行记录,一共遍历了254786行记录。及具体的时间戳和SQL语句。

使用MySQLdumpslow进行慢查询日志分析

MySQLdumpslow -s t -t 5 slow_log_20140819.txt

输出查询耗时最多的Top5条SQL语句

-s:排序方法,t表示按时间 (此外,c为按次数,r为按返回记录数等)

-t:去Top多少条,-t 5表示取前5条

慢查询相关的配置参数

log_slow_queries:是否打开慢查询日志,得先确保=ON后面才有得分析

long_query_time:查询时间大于多少秒的SQL被当做是慢查询,一般设为1S

log_queries_not_using_indexes:是否将没有使用索引的记录写入慢查询日志

slow_query_log_file:慢查询日志存放路径


3.如何针对具体的SQL做优化?

使用Explain分析SQL语句执行计划

如上面例子所示,重点关注下type,rows和Extra:

type:使用类别,有无使用到索引。结果值从好到坏:… > range(使用到索引) > index > ALL(全表扫描),一般查询应达到range级别

rows:SQL执行检查的记录数

Extra:SQL执行的附加信息,如”Using index”表示查询只用到索引列,不需要去读表等

使用Profiles分析SQL语句执行时间和消耗资源

使用Profiles分析SQL语句执行时间和消耗资源

MySQL> set profiling=1; (启动profiles,默认是没开启的)

MySQL> select count(1) from t_online_group_records where UNIX_TIMESTAMP(gre_updatetime) > 123456789; (执行要分析的SQL语句)

MySQL> show profiles;

+----------+------------+----------------------------------------------------------------------------------------------+

| Query_ID | Duration   | Query                                                                                        |

+----------+------------+----------------------------------------------------------------------------------------------+

|        1 | 0.00043250 | select count(1) from t_online_group_records where UNIX_TIMESTAMP(gre_updatetime) > 123456789 |

+----------+------------+----------------------------------------------------------------------------------------------+

1 row in set (0.00 sec)

MySQL> show profile cpu,block io for query 1; (可看出SQL在各个环节的耗时和资源消耗)

+----------------------+----------+----------+------------+--------------+---------------+

| Status               | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |

+----------------------+----------+----------+------------+--------------+---------------+

...

| optimizing           | 0.000016 | 0.000000 |   0.000000 |            0 |             0 |

| statistics           | 0.000020 | 0.000000 |   0.000000 |            0 |             0 |

| preparing            | 0.000017 | 0.000000 |   0.000000 |            0 |             0 |

| executing            | 0.000011 | 0.000000 |   0.000000 |            0 |             0 |

| Sending data         | 0.000076 | 0.000000 |   0.000000 |            0 |             0 |

...

SQL优化的技巧 (只提一些业务常遇到的问题)

最关键:索引,避免全表扫描。

对接触的项目进行慢查询分析,发现TOP10的基本都是忘了加索引或者索引使用不当,如索引字段上加函数导致索引失效等(如where UNIX_TIMESTAMP(gre_updatetime)>123456789)

+----------+------------+---------------------------------------+

| Query_ID | Duration   | Query                                 |

+----------+------------+---------------------------------------+

|        1 | 0.00024700 | select * from mytable where id=100    |

|        2 | 0.27912900 | select * from mytable where id+1=101  |

+----------+------------+---------------------------------------+

另外很多同学在拉取全表数据时,喜欢用select xx from xx limit 5000,1000这种形式批量拉取,其实这个SQL每次都是全表扫描,建议添加1个自增id做索引,将SQL改为select xx from xx where id>5000 and id;

+----------+------------+-----------------------------------------------------+

| Query_ID | Duration   | Query                                               |

+----------+------------+-----------------------------------------------------+

|        1 | 0.00415400 | select * from mytable where id>=90000 and id91000 |

|        2 | 0.10078100 | select * from mytable limit 90000,1000              |

+----------+------------+-----------------------------------------------------+

合理用好索引,应该可解决大部分SQL问题。当然索引也非越多越好,过多的索引会影响写操作性能

只select出需要的字段,避免select

+----------+------------+-----------------------------------------------------+

| Query_ID | Duration   | Query                                               |

+----------+------------+-----------------------------------------------------+

|        1 | 0.02948800 | select count(1) from ( select id from mytable ) a   |

|        2 | 1.34369100 | select count(1) from ( select * from mytable ) a    |

+----------+------------+-----------------------------------------------------+

尽量早做过滤,使Join或者Union等后续操作的数据量尽量小

把能在逻辑层算的提到逻辑层来处理,如一些数据排序、时间函数计算等

…….

PS:关于SQL优化,已经有足够多文章了,所以就不讲太全面了,只重点说自己1个感受:索引!基本都是因为索引!

4.SQL层面已难以优化,请求量继续增大时的应对策略?

下面是我能想到的几个方法,每个方法又都是一篇大文章了,这里就不展开

分库分表

使用集群(master-slave),读写分离

增加业务的cache层

使用连接池

5.MySQL如何做主从数据同步?

复制机制(Replication)

master通过复制机制,将master的写操作通过binlog传到slave生成中继日志(relaylog),slave再将中继日志redo,使得主库和从库的数据保持同步

复制相关的3个MySQL线程

  1. slave上的I/O线程:向master请求数据

  2. master上的Binlog Dump线程:读取binlog事件并把数据发送给slave的I/O线程

  3. slave上的SQL线程:读取中继日志并执行,更新数据库

属于slave主动请求拉取的模式

实际使用可能遇到的问题

数据非强一致:CDB默认为异步复制,master和slave的数据会有一定延迟(称为主从同步距离,一般 主从同步距离变大:可能是DB写入压力大,也可能是slave机器负载高,网络波动等原因,具体问题具体分析

相关监控命令

show processlist:查看MySQL进程信息,包括3个同步线程的当前状态

show master status :查看master配置及当前复制信息

show slave status:查看slave配置及当前复制信息

6.如何防止DB误操作和做好容灾?

业务侧应做到的几点:

重要DB数据的手工修改操作,操作前需做到2点:1 先在测试环境操作 2 备份数据

根据业务重要性做定时备份,考虑系统可承受的恢复时间

进行容灾演练,感觉很必要

MySQL备份和恢复操作

1.备份:使用MySQLdump导出数据

MySQLdump -u 用户名 -p 数据库名 [表名] > 导出的文件名

MySQLdump -uxxx -p xxx mytable > mytable.20140921.bak.sql

2.恢复:导入备份数据

MySQL -uxxx -p xxxx

3.恢复:导入备份数据之后发送的写操作。先使用MySQLbinlog导出这部分写操作SQL(基于时间点或位置)

如导出2014-09-21 09:59:59之后的binlog:

MySQLbinlog --database="test" --start-date="2014-09-21 09:59:59" /var/lib/MySQL/mybinlog.000001 > binlog.data.sql

如导出起始id为123456之后的binlog:

MySQLbinlog --database="test" --start-position="123456" /var/lib/MySQL/mybinlog.000001 > binlog.data.sql

最后把要恢复的binlog导入db

MySQL -uxxxx -p xxxx

8.MySQL内部结构有哪些层次?

非专业DBA,这里只简单贴个结构图说明下。MySQL是开源系统,其设计思路和源代码都出自大牛之手,有空可以学习下。

  1. Connectors:连接器。接收不同语言的Client交互

  2. Management Serveices & Utilities:系统管理和控制工具

  3. Connection Pool: 连接池。管理用户连接

  4. SQL Interface: SQL接口。接受用户的SQL命令,并且返回用户需要查询的结果

  5. Parser: 解析器。验证和解析SQL语句成内部数据结构

  6. Optimizer: 查询优化器。为查询语句选择合适的执行路径

  7. Cache和Buffer:查询缓存。缓存查询的结果,有命中即可直接返回

  8. Engine:存储引擎。MySQL数据最后组织并存储成具体文件


标签: mysql
2016.12.19   /   热度:1993   /   分类: mysql

发表评论:

©地球仪的BLOG  |  Powered by Emlog